Search results for "Gene Knock-In Techniques"

showing 10 items of 13 documents

SIRT1 prevents genotoxic stress-induced p53 activation in acute myeloid leukemia

2014

SIRT1 is an important regulator of cellular stress response and genomic integrity. Its role in tumorigenesis is controversial. Whereas sirtuin 1 (SIRT1) can act as a tumor suppressor in some solid tumors, increased expression has been demonstrated in many cancers, including hematologic malignancies. In chronic myeloid leukemia, SIRT1 promoted leukemia development, and targeting SIRT1 sensitized chronic myeloid leukemia progenitors to tyrosine kinase inhibitor treatment. In this study, we investigated the role of SIRT1 in acute myeloid leukemia (AML). We show that SIRT1 protein, but not RNA levels, is overexpressed in AML samples harboring activating mutations in signaling pathways. In FMS-l…

Myeloidendocrine system diseasesmedicine.drug_classImmunologyBiologymedicine.disease_causeBiochemistryTyrosine-kinase inhibitorMiceSirtuin 1hemic and lymphatic diseasesmedicineAnimalsHumansGene Knock-In TechniquesKinase activityfood and beveragesMyeloid leukemiaCell BiologyHematologymedicine.diseaseEnzyme ActivationMice Inbred C57BLLeukemia Myeloid Acuteenzymes and coenzymes (carbohydrates)Leukemiamedicine.anatomical_structureGene Knockdown TechniquesCancer researchHeterograftsTumor Suppressor Protein p53Signal transductionCarcinogenesisTyrosine kinasehormones hormone substitutes and hormone antagonistsDNA DamageSignal TransductionBlood
researchProduct

Proteomic signature of the Dravet syndrome in the genetic Scn1a-A1783V mouse model.

2021

Abstract Background Dravet syndrome is a rare, severe pediatric epileptic encephalopathy associated with intellectual and motor disabilities. Proteomic profiling in a mouse model of Dravet syndrome can provide information about the molecular consequences of the genetic deficiency and about pathophysiological mechanisms developing during the disease course. Methods A knock-in mouse model of Dravet syndrome with Scn1a haploinsufficiency was used for whole proteome, seizure, and behavioral analysis. Hippocampal tissue was dissected from two- (prior to epilepsy manifestation) and four- (following epilepsy manifestation) week-old male mice and analyzed using LC-MS/MS with label-free quantificati…

MaleProteomics0301 basic medicineProteomeHippocampusEpilepsies MyoclonicHaploinsufficiencyScn1aHippocampusSynaptic TransmissionElevated Plus Maze TestEpilepsyMice0302 clinical medicineTandem Mass Spectrometry11-beta-Hydroxysteroid Dehydrogenase Type 1Genetic epilepsyCarbon-Nitrogen LigasesGene Knock-In TechniquesGliosisNeuronal PlasticityBehavior AnimalEpileptic encephalopathyImmunohistochemistryAstrogliosisNeurologyProteomeDisease ProgressionFemaleHaploinsufficiencySignal TransductionRC321-571Dopamine and cAMP-Regulated Phosphoprotein 32Neovascularization PhysiologicNeurosciences. Biological psychiatry. NeuropsychiatryBiologyNitric Oxide03 medical and health sciencesDravet syndromemedicineAnimalsHyperthermiaSocial Behaviorras-GRF1Proteomic Profilingmedicine.diseaseVascular Endothelial Growth Factor Receptor-2NAV1.1 Voltage-Gated Sodium ChannelDisease Models Animal030104 developmental biologyRotarod Performance TestSynaptic plasticityEpileptic Encephalopathy ; Genetic Epilepsy ; Mice ; Proteome ; Scn1aCalcium-Calmodulin-Dependent Protein Kinase Type 2Open Field TestNeuroscience030217 neurology & neurosurgeryChromatography Liquid
researchProduct

LRP1 mediates bidirectional transcytosis of amyloid-β across the blood-brain barrier.

2011

According to the "amyloid hypothesis", the amyloid-β (Aβ) peptide is the toxic intermediate driving Alzheimer's disease (AD) pathogenesis. Recent evidence suggests that the low density lipoprotein receptor-related protein 1 (LRP1) transcytoses Aβ out of the brain across the blood-brain barrier (BBB). To provide genetic evidence for LRP1-mediated transcytosis of Aβ across the BBB we analyzed Aβ transcytosis across primary mouse brain capillary endothelial cells (pMBCECs) derived from wild-type and LRP1 knock-in mice. Here, we show that pMBCECs in vitro express functionally active LRP1. Moreover, we demonstrate that LRP1 mediates transcytosis of [(125)I]-Aβ(1-40) across pMBCECs in both direct…

AgingMice 129 StrainEndogenyBiologyEndocytosisBlood–brain barrierchemistry.chemical_compoundMicemedicineAnimalsGene Knock-In TechniquesReceptorCells CulturedAmyloid beta-PeptidesGeneral NeuroscienceTumor Suppressor ProteinsMolecular biologyLRP1Peptide FragmentsBiochemistry of Alzheimer's diseaseCell biologyMice Inbred C57BLmedicine.anatomical_structurechemistryTranscytosisReceptors LDLBlood-Brain BarrierLow-density lipoproteinNeurology (clinical)Geriatrics and GerontologyTranscytosisLow Density Lipoprotein Receptor-Related Protein-1Developmental BiologyNeurobiology of aging
researchProduct

In vivo fate mapping with SCL regulatory elements identifies progenitors for primitive and definitive hematopoiesis in mice.

2009

10 páginas, 6 figuras.-- et al.

Definitive hematopoiesisEmbryologyMyeloidPopulationConditional mouse modelIn vivo linage and fate tracingEmbryonic DevelopmentStem cell leukemia geneBiology03 medical and health sciencesMice0302 clinical medicineFate mappinghemic and lymphatic diseasesProto-Oncogene ProteinsCRE systemmedicineBasic Helix-Loop-Helix Transcription FactorsAnimalsCell LineageMesodermal blood cell specificationGene Knock-In TechniquesProgenitor celleducationGeneTetracycline systemT-Cell Acute Lymphocytic Leukemia Protein 1Primitive hematopoiesis030304 developmental biology0303 health scienceseducation.field_of_studyMicroscopy ConfocalStem CellsEmbryoFlow CytometryCell biologyHematopoiesisGastrulationHaematopoiesismedicine.anatomical_structureBlood cell precursors030220 oncology & carcinogenesisImmunologyIn vivo lineage markingDevelopmental BiologyMechanisms of development
researchProduct

Primary oligodendrocyte death does not elicit anti-CNS immunity.

2012

Anti-myelin immunity is commonly thought to drive multiple sclerosis, yet the initial trigger of this autoreactivity remains elusive. One of the proposed factors for initiating this disease is the primary death of oligodendrocytes. To specifically test such oligodendrocyte death as a trigger for anti-CNS immunity, we inducibly killed oligodendrocytes in an in vivo mouse model. Strong microglia-macrophage activation followed oligodendrocyte death, and myelin components in draining lymph nodes made CNS antigens available to lymphocytes. However, even conditions favoring autoimmunity-bystander activation, removal of regulatory T cells, presence of myelin-reactive T cells and application of dem…

Encephalomyelitis Autoimmune ExperimentalMultiple SclerosisEncephalomyelitisTransgene610 Medicine & healthMice TransgenicBiology10263 Institute of Experimental Immunology03 medical and health sciencesMyelinMice0302 clinical medicineAntigenImmunitymedicineAnimalsGene Knock-In TechniquesCells Cultured030304 developmental biology0303 health sciencesCell DeathGeneral NeuroscienceMultiple sclerosis2800 General Neurosciencemedicine.diseaseOligodendrocyteOligodendrogliamedicine.anatomical_structureImmunology570 Life sciences; biologyExperimental pathologyNeuroscience030217 neurology & neurosurgeryNature neuroscience
researchProduct

FGFR2mutation in 46,XY sex reversal with craniosynostosis

2015

Patients with 46,XY gonadal dysgenesis (GD) exhibit genital anomalies, which range from hypospadias to complete male-to-female sex reversal. However, a molecular diagnosis is made in only 30% of cases. Heterozygous mutations in the human FGFR2 gene cause various craniosynostosis syndromes including Crouzon and Pfeiffer, but testicular defects were not reported. Here, we describe a patient whose features we would suggest represent a new FGFR2-related syndrome, craniosynostosis with XY male-to-female sex reversal or CSR. The craniosynostosis patient was chromosomally XY, but presented as a phenotypic female due to complete GD. DNA sequencing identified the FGFR2c heterozygous missense mutatio…

musculoskeletal diseasesMalemedicine.medical_specialtyGonadAdolescentDNA Mutational AnalysisMutation MissenseGonadal dysgenesisBiologymedicine.disease_causeCraniosynostosisXY gonadal dysgenesisCraniosynostosesMiceInternal medicineGeneticsmedicineAnimalsHumansMissense mutationGene Knock-In TechniquesReceptor Fibroblast Growth Factor Type 2Molecular BiologyGenetics (clinical)Gonadal Dysgenesis 46XYGeneticsMutationArticlesSyndromeGeneral MedicineSex reversalmedicine.diseaseMice Mutant StrainsDisease Models AnimalEndocrinologymedicine.anatomical_structurePfeiffer syndromeFemaleHuman Molecular Genetics
researchProduct

A binary genetic approach to characterize TRPM5 cells in mice

2015

International audience; Transient receptor potential channel subfamily M member 5 (TRPM5) is an important downstream signaling component in a subset of taste receptor cells making it a potential target for taste modulation. Interestingly, TRPM5 has been detected in extra-oral tissues; however, the function of extra-gustatory TRPM5-expressing cells is less well understood. To facilitate visualization and manipulation of TRPM5-expressing cells in mice, we generated a Cre knock-in TRPM5 allele by homologous recombination. We then used the novel TRPM5-IRES-Cre mouse strain to report TRPM5 expression by activating a tau GFP transgene. To confirm faithful coexpression of tau GFP and TRPM5 we gene…

MalePhysiologytaste papillaegene targetingBehavioral NeuroscienceMice0302 clinical medicineTaste receptor[SDV.IDA]Life Sciences [q-bio]/Food engineeringGene Knock-In TechniquesIn Situ Hybridization Fluorescence0303 health sciencestaste budsiresGene targetingrosa26ImmunohistochemistrySensory SystemsCell biologyknock inmedicine.anatomical_structuretrpm5taste receptor cellsFemaleGenotypeTransgeneCre recombinaseTRPM Cation ChannelsMice TransgenicBiologyAntibodiestgfpseptal organ of masera03 medical and health sciencesOlfactory MucosaTonguemicrovillar cellsPhysiology (medical)Gene knockinmedicineAnimals[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process EngineeringTRPM5cre recombinaseAlleles030304 developmental biologyPalateMice Inbred C57BLvomeronasal organolfactory epitheliumgastrointestinal tractHomologous recombinationOlfactory epithelium030217 neurology & neurosurgery
researchProduct

PTEN recruitment controls synaptic and cognitive function in Alzheimer's models

2016

Dyshomeostasis of amyloid-β peptide (Aβ) is responsible for synaptic malfunctions leading to cognitive deficits ranging from mild impairment to full-blown dementia in Alzheimer's disease. Aβ appears to skew synaptic plasticity events toward depression. We found that inhibition of PTEN, a lipid phosphatase that is essential to long-term depression, rescued normal synaptic function and cognition in cellular and animal models of Alzheimer's disease. Conversely, transgenic mice that overexpressed PTEN displayed synaptic depression that mimicked and occluded Aβ-induced depression. Mechanistically, Aβ triggers a PDZ-dependent recruitment of PTEN into the postsynaptic compartment. Using a PTEN kno…

0301 basic medicinePrimary Cell CulturePDZ DomainsMice TransgenicMolecular neuroscienceBiologyNeurotransmissionSynaptic TransmissionMice03 medical and health sciences0302 clinical medicineAlzheimer DiseasePostsynaptic potentialmedicineAnimalsPTENGene Knock-In TechniquesAmyloid beta-PeptidesGeneral NeurosciencePTEN PhosphohydrolaseLong-term potentiationmedicine.diseaseRatsDisease Models Animal030104 developmental biologySynaptic fatigueSynaptic plasticitybiology.proteinAlzheimer's diseaseCognition DisordersNeuroscience030217 neurology & neurosurgeryNature Neuroscience
researchProduct

The actin remodeling protein cofilin is crucial for thymic αβ but not γδ T-cell development

2018

Cofilin is an essential actin remodeling protein promoting depolymerization and severing of actin filaments. To address the relevance of cofilin for the development and function of T cells in vivo, we generated knock-in mice in which T-cell–specific nonfunctional (nf) cofilin was expressed instead of wild-type (WT) cofilin. Nf cofilin mice lacked peripheral αβ T cells and showed a severe thymus atrophy. This was caused by an early developmental arrest of thymocytes at the double negative (DN) stage. Importantly, even though DN thymocytes expressed the TCRβ chain intracellularly, they completely lacked TCRβ surface expression. In contrast, nf cofilin mice possessed normal numbers of γδ T cel…

0301 basic medicineReceptors Antigen T-Cell alpha-betaT-LymphocytesJurkat cellsenvironment and public healthImmune ReceptorsBiochemistryWhite Blood CellsJurkat CellsMice0302 clinical medicineContractile ProteinsSpectrum Analysis TechniquesShort ReportsAnimal CellsCell MovementT-Lymphocyte SubsetsMedicine and Health SciencesGene Knock-In TechniquesBiology (General)Post-Translational ModificationPhosphorylationThymocytesImmune System ProteinsT CellsGeneral NeuroscienceStem CellsReceptors Antigen T-Cell gamma-deltaTransfectionAnimal ModelsCofilinFlow CytometryCell biologyThymusmedicine.anatomical_structureExperimental Organism SystemsActin Depolymerizing FactorsSpectrophotometry030220 oncology & carcinogenesisPhosphorylationCytophotometryCellular TypesGeneral Agricultural and Biological SciencesSignal TransductionHematopoietic Progenitor CellsProlineQH301-705.5T cellImmune CellsImmunologyDouble negativeMouse Modelsmacromolecular substancesThymus GlandBiologyResearch and Analysis MethodsGeneral Biochemistry Genetics and Molecular Biology03 medical and health sciencesModel OrganismsmedicineAnimalsHumansActinBlood CellsGeneral Immunology and MicrobiologyActin remodelingBiology and Life SciencesProteinsCell BiologyActinsT Cell ReceptorsCytoskeletal Proteins030104 developmental biologyImmune SystemMutationPLoS Biology
researchProduct

Resonance properties of GABAergic interneurons in immature GAD67-GFP mouse neocortex.

2014

Subthreshold resonance is a characteristic membrane property of different neuronal classes, is critically involved in the generation of network oscillations, and tunes the integration of synaptic inputs to particular frequency ranges. In order to investigate whether neocortical GABAergic interneurons show resonant behavior already during early postnatal development, we performed whole-cell patch-clamp recordings from visually identified interneurons in supragranular layers of parietal regions in coronal neocortical slices from postnatal day (P) P6-P13 GAD67-GFP knock-in mice. Subthreshold resonance was analyzed by injection of sinusoidal current with varying frequency. About 50% of the inve…

genetic structuresSubthreshold membrane potential oscillationsGlutamate decarboxylaseGreen Fluorescent ProteinsNeocortexSodium ChannelsMembrane PotentialsCalcium Channels T-TypeMiceInterneuronsParietal LobemedicineAnimalsGene Knock-In TechniquesGABAergic NeuronsMolecular BiologyMembrane potentialNeocortexSubthreshold conductionChemistryGlutamate Decarboxylasemusculoskeletal neural and ocular physiologyGeneral NeuroscienceResonanceMembrane hyperpolarizationmedicine.anatomical_structurenervous systemGABAergicNeurology (clinical)NeuroscienceDevelopmental BiologyBrain research
researchProduct